One-Pot Tandem Decarboxylative Allylation—Heck Cyclization of Allyl Diphenylglycinate Imines: Rapid Access to Polyfunctionalized 1-Aminoindanes

LETTERS 2008 Vol. 10, No. 22 5131-5134

ORGANIC

Wendy H. Fields, Ali K. Khan, Michal Sabat, and Jason J. Chruma*

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319 jjc5p@virginia.edu

Received August 25, 2008

ABSTRACT

1-Aminoindanes are generated from allyl diphenylglycinate imines employing a "one-pot" palladium-catalyzed decarboxylative allylation—Heck cyclization cascade. Variation of both the aryl and allyl moieties leads to a diverse range of polycyclic imines, amenable to the synthesis of natural products and other biologically relevant small molecules.

Palladium-catalyzed decarboxylative coupling reactions, which typically proceed through an $\eta^3 \pi$ -allyl palladium intermediate, have emerged as efficient and essentially neutral pathways for carbon–carbon bond formation.¹ A unique value inherent to Pd-catalyzed transformations is the ability

10.1021/ol801986m CCC: \$40.75 © 2008 American Chemical Society Published on Web 10/29/2008 to couple them to other powerful carbon–carbon bondforming events in one reaction vessel.² Despite intense interest in Pd-mediated decarboxylative alkylations,^{1,3} to the best of our knowledge, very few examples exist that couple this technique with other Pd-catalyzed carbon–carbon bondforming reactions in one reaction vessel.⁴ Herein, we report a two step–one-pot decarboxylative allylation–Heck cyclization to rapidly afford 3-alkylidenyl-1-aminoindanes.

Recent studies have identified the functionalized 1-aminoindane motif as both a unique platform for ventures in diversity-oriented synthesis^{5a} and for the construction of potent atypical antipsychotic agents.^{5b} We reasoned that the Pd-catalyzed decarboxylative allylation of diphenylglycinate

⁽¹⁾ For recent examples of decarboxylative enolate alkylations, see: (a) Burger, E. C.; Tunge, J. A. Org. Lett. 2004, 6, 4113–4115. (b) Enquist, J. A., Jr.; Stoltz, B. M. Nature 2008, 453, 1228–1231. (c) Trost, B. M.; Xu, J. J. Am. Chem. Soc. 2005, 127, 2846–2847. (d) McFadden, R. M.; Stoltz, B. M. J. Am. Chem. Soc. 2006, 128, 7738–7739.

^{(2) (}a) Metal Catalyzed Cascade Reactions. *Top. Organomet. Chem.* Müller, T. J. J., Ed. **2006**, *19*, 1–91, 149–205. (b) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. *Angew. Chem., Int. Ed.* **2005**, *44*, 4442–4489. (c) Poli, G.; Giambastiani, G.; Heumann, A. *Tetrahedron* **2000**, *56*, 5959–5989. (d) de Meijere, A.; Bräse, S. *Organomet. Chem.* **1999**, *576*, 88–110.

^{(3) (}a) Burger, E. C.; Tunge, J. A. J. Am. Chem. Soc. **2006**, *128*, 10002–10003. (b) Tunge, J. A.; Burger, E. C. Eur. J. Org. Chem. **2005**, *9*, 1715–1726. (c) Rayabarapu, D. K.; Tunge, J. A. J. Am. Chem. Soc. **2005**, *127*, 13510–13511. (d) Yamamoto, Y.; Nakamura, H.; Sekido, M.; Ito, M. J. Am. Chem. Soc. **1998**, *120*, 6838–6839. (e) You, S.-L.; Dai, L.-X. Angew. Chem., Int. Ed. **2006**, *45*, 5246–5248. (f) Tsuji, J. Pure Appl. Chem. **1986**, *58*, 869–878. (g) Imao, D.; Itoi, A.; Yamazaki, A.; Shirakura, M.; Ohtoshi, R.; Ogata, K.; Ohmori, Y.; Ohta, T.; Ito, Y. J. Org. Chem. **2007**, *72*, 1652–1658.

^{(4) (}a) Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc.
2002, 124, 11250–11251. (b) Moon, J.; Jeong, M.; Nam, H.; Ju, J.; Moon, J. H.; Jung, H. M.; Lee, S. Org. Lett. 2008, 10, 945–948. (c) Forgione, P.; Brochu, M. C.; St-Onge, M.; Thesen, K. H.; Bailey, M. D.; Bilodeau, F. J. Am. Chem. Soc. 2006, 128, 11350–11351. (d) Goossen, L. J.; Deng, G.; Levy, L. M. Science 2006, 313, 662–664.

^{(5) (}a) Kesavan, S.; Panek, J. S.; Porco, J. A. Org. Lett. **2007**, *9*, 5203–5206. (b) Graham, J. M.; Coughenour, L. L.; Barr, B. M.; Rock, D. L.; Nikam, S. S. Bioorg. Med. Chem. Lett. **2008**, *18*, 489–493.

imines recently developed by our group⁶ could be coupled to an intramolecular Heck reaction to rapidly generate functionalized 1-aminoindanes. Accordingly, *o*-iodobenzaldimine **1a** was subjected to our standard decarboxylative allylation conditions (10 mol % of Pd(dba)₂, dppf, DMF, 20 °C). We were gratified to observe the formation of the cyclized product **3a** in addition to the expected homoallylic imine **2a** in a 1:10 ratio and excellent combined yield (Scheme 1). It is worth noting that **3a** was obtained even

without the addition of exogenous base or heat. Subjection of the resulting reaction mixture to typical Heck reaction conditions⁷ effected complete conversion to the 3-methyl-enyl-1-aminoindane **3a**, whose structure was confirmed by X-ray crystallographic analysis (see inset).

Encouraged by these results, we next sought optimal conditions to effect the two-step process in one reaction vessel. Initial attempts employed 10 mol % of Pd(dba)₂ and dppf as catalyst, but coelution of the dibenzylidene—acetone ligand during chromatography compromised the purity of the product. Tetrakis(triphenylphosphine)palladium(0), however, provided rapid and effective decarboxylative allylation and subsequent Heck cyclization without introducing intractable purification issues. Furthermore, microwave irradiation rapidly accelerated the Heck reaction,⁸ though in some cases an additional isomerized product **4a** was coisolated in unpredictable ratios (Table 1).^{5a,9} This result may be at-

(9) Small amounts of the alkene disproportionation products 9 and 10 were also observed (1 H NMR and LC/MS) in conjunction to 4a.

Ũ	$ \overset{Ph}{\stackrel{N}{\longrightarrow}} \overset{Ph}{\stackrel{0}{\longrightarrow}} \overset{i.)}{\stackrel{i.)}{}} \frac{1}{ii.)} $ 1a	Pd(PPh ₃) ₄ , DMF, 2ι [additive] (1 equiv) Et ₃ N, μw: 150 °C	$\begin{array}{c} Ph \\ Ph \\ Ph \\ N \\ \hline \\ 3a \end{array}$	$\begin{array}{c} Ph \\ Ph \\ \\ + \\ 4a \end{array}$
			isolated	isomer
entry	time (i:ii)	additive	yield (%)	ratio (3a:4a)
1	5 min:5 min	none	≥ 99	$1:1^a$
2	5 min: 5 min	TBAC	72	9.4:1
3	5 min: 5 min	TBAI	73	2.7:1
4	5 min: 5 min	TBAB	65	3.4:1
5	5 min:5 min	Ag_2SO_4	91	\geq 20:1
6	2 h^b :10 min	$AgNO_3$	NR	
7	2 h^b :10 min	AgOTf	NR	
8	$2 \text{ h}^b:10 \min$	AgO_2CCF_3	NR	
9	5 min: 5 min	Tl_2CO_3	72	16:1
10	5 min: 5 min	K_2CO_3	70	2.6:1

^{*a*} This represents an average ratio; specific ratios per run were highly variable. ^{*b*} No conversion to homoallylic imine; subjection to Heck reaction conditions after 2 h led to complete decomposition of **1a**. ^{*c*} 2 equiv of K₂CO₃ instead of Et₃N. NR = no reaction. TBAC = tetrabutylammonium chloride. TBAI = tetrabutylammonium iodide. TBAB = tetrabutylammonium bromide.

tributed to the production of an ephemeral palladium hydride species that can isomerize the double bond to the more substituted position via a series of addition-elimination events.¹⁰ Remarkably, the resulting enimine **4a** was stable to standard flash chromatography through nonbuffered silica gel. We investigated a variety of additives to enhance the selectivity of the Heck cyclizations (Table 1).¹⁰ Tetraalkylammonium salts^{10f} did not have an appreciable effect on the reaction rate or alkene isomer ratios (entries 2-4). Alternatively, silver(I) sulfate successfully inhibited isomerization, leading to the exclusive formation of 3a in excellent isolated yield (entry 5).^{10a,e} Similarily, addition of Tl₂CO₃, shown in entry 9, for the tandem reaction led to a significantly improved isomer ratio.^{10c} It is worth noting that other silver(I) salts (entries 6-8) completely inhibited the initial decarboxylative allylation; none of the other additives were found to impact this transformation.¹¹ Van Vranken et al. observed that use of an insoluble base was crucial for inhibiting alkene migration of α,β -unsaturated esters in their tandem carbene insertion-Heck cyclization tactic.¹² For our reaction, however, we obtained a disappointing 2.6:1 ratio of alkenes 3a:4a when triethylamine was replaced with K₂CO₃ as base.

⁽⁶⁾ Yeagley, A. A.; Chruma, J. J. Org. Lett. 2007, 9, 2879-2882.

^{(7) (}a) Heck, R. F. Acc. Chem. Res. **1979**, *12*, 146–151. (b) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. **1971**, *44*, 581. (c) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. **2000**, *100*, 3009–3066. (d) Daves, G. D.; Hallberg, A. Chem. Rev. **1989**, *89*, 1433–144.

^{(8) (}a) Xie, X.; Lu, J.; Chen, B.; Han, J.; She, X.; Pan, X. *Tetrahedron Lett.* 2004, 45, 809–811.
(b) Declerckz, V.; Ribière, P.; Nédellec, Y.; Allouchi, H.; Martinez, J.; Lamaty, F. *Eur. J. Org. Chem.* 2007, 201–208.
(c) Svennebring, A.; Garg, N.; Nilsson, P.; Hallberg, A.; Larhed, M. *J. Org. Chem.* 2005, 70, 4720–4725.
(d) Donets, P. A.; Van der Eycken, E. V. *Org. Lett.* 2007, 9, 3017–3020.

^{(10) (}a) Abelman, M. M.; Oh, T.; Overman, L. E. J. Org. Chem. 1987,
52, 4130–4133. (b) Wheatley, B. M. M.; Keay, B. A. J. Org. Chem. 2007,
72, 7253–7259. (c) Reetz, M. T. Angew. Chem., Int. Ed. 1972, 11, 129–
130. (d) Grigg, R.; Loganathan, V.; Santhakumar, V.; Sridharan, V.;
Teasdale, A. Tetrahedron Lett. 1991, 32, 687–690. (e) Larock, R. C.; Gong,
W. H. J. Org. Chem. 1989, 54, 2047–2050. (f) Jeffery, T. Synthesis 1987,
70–71.

⁽¹¹⁾ We have observed a similar inhibition of the decarboxylative allylation at rt with $\geq 10 \text{ mol } \%$ of other Lewis acids, e.g., LiCl, ZnCl₂, or Sc(OTf)₃.

⁽¹²⁾ Kudirka, R.; Van Vranken, D. L. J. Org. Chem. 2008, 73, 3585–3588.

^{(13) (}a) Knowles, J. P.; Whiting, A. Org. Biomol. Chem. 2007, 5, 31–44. (b) Crisp, G. T. Chem. Soc. Rev. 1998, 27, 427–436.

The substrate scope of the reaction was first evaluated through variation of the imine moiety. Accordingly, imines 1 were subjected to our optimized two-step, one-pot reaction conditions to afford the corresponding cyclic products 3 (Table 2). A variety of aryl and heteroaryl functionalities

Table 2. Tandem Decarboxylative Allylation-Heck Cyclization

^{*a*} 1.0 equiv of Ag₂SO₄ added to inhibit double-bond migration. ^{*b*} Ag₂SO₄ omitted. ^{*c*} Compound **1e** was a 4.6:1 ratio of aryl iodide and aryl bromide. ^{*d*} 100% conversion to homoallylic imine as a 9.3:1 ratio of regioisomers; no cyclized product (**3f**) was observed. ^{*e*} Et₃N added prior to decarboxylative allylation.

successfully underwent the tandem reaction process. In accord with our previous decarboxylative allylation studies and the accepted mechanism of the Heck reaction,¹³ electron-deficient *o*-halobenzaldimines provided superior yields and rates versus electron-rich counterparts (compare entries 5 and 4). In an extreme case, the electron-rich furanyl bromide **1g** did not undergo Heck cyclization, halting at the intermediate homoallylic imine as a 9.3:1 ratio of regioisomers (entry 8).⁶

wave-accelerated olefin cross-metathesis either prior to or after imine formation.¹⁴ For example, subjection of alkene **1a** and stilbene to Grubbs' second-generation catalyst¹⁵ under microwave heating (90 °C, 10 min) rapidly afforded the corresponding imine **5b** in high isolated yield (Scheme 2).

The relatively electron-deficient pyridinyl heterocycle 1f,

however, smoothly converted to the corresponding tandem

Scheme 2. Diversification of the Allyl Ester Moeity Employing Olefin Cross-Metathesis

The resultant α -imino esters 5 were subjected to our optimized tandem decarboxylative allylation-Heck cyclization conditions (Table 3). For the methyl acrylate substrate 5a, the ratio of resultant isomers 6a and 7a proved to be extremely variable, though combined yields were typically high (entries 1 and 2). In contrast to allyl ester 1a, Ag₂SO₄ did not consistently improve the ratio of products in favor of dihydrobenzofulvene 6a. Surprisingly, addition of Tl₂CO₃ to the reaction mixture resulted in the predominant formation of the isomerized product 7a. Preferential formation of the internalized alkene was unique to substrate 5a; cinnamyl ester **5b** and furanyl imine **5c** consistently afforded the corresponding exomethylenes **6b** and **6c**, respectively, as the exclusive cyclization products. The successful Heck cyclization of the election-rich furanyl substrate 5c is noteworthy, given that the related allyl ester 1g did not proceed past

(16) Young and Kerr noted a similar reliance on Ag_2SO_4 for a related Heck cyclization in their total synthesis of nakadomarin A: Young, I. S.; Kerr, M. A. J. Am. Chem. Soc. **2007**, 129, 1465–1469.

(17) (a) Lautens, M.; Fang, Y.-Q. Org. Lett. 2003, 5, 3679–3682. (b) Andersson, P. G.; Schab, S. Organometallics 1995, 14, 1–2. (c) Takacs, J. M.; Lawson, E. C.; Clement, F. J. Am. Chem. Soc. 1997, 119, 5956–5957. (d) Maeda, K.; Farrington, E. J.; Galardon, E.; John, B. D.; Brown, J. M. Adv. Synth. Catal. 2002, 344, 104–109. (e) Bray, K. L.; Lloyd-Jones, G. C.; Muñoz, M. P.; Slatford, P. A.; Tan, E. H. P.; Tyler-Mahon, A. R.; Worthington, P. A. Chem. –Eur. J. 2006, 12, 8650–8663. (f) Hudlicky, T.; Olivo, H. F. J. Am. Chem. Soc. 1992, 114, 9694–9696.

⁽¹⁴⁾ For examples of microwave-accelerated olefin cross-metathesis reactions, see: (a) Coquerel, Y.; Rodriguez, J. *Eur. J. Org. Chem.* **2008**, 1125–1132. (b) Gebauer, J.; Arseniyadis, S.; Cossy, J. *Eur. J. Org. Chem.* **2008**, 2701–2704. (c) Aitken, S. G.; Abell, A. D. *Aust. J. Chem.* **2005**, *58*, 3–13.

^{(15) (}a) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. **1996**, 118, 100–110. (b) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. **1995**, 34, 2039–2041.

 Table 3. Tandem Decarboxylative Allylation-Heck Cyclization

 of Imines 5

^{*a*} This represents an average ratio; specific ratios are highly variable sometimes with **6a** predominating.^{*b*} 2.0 equiv of Tl₂CO₃ added.^{*c*} Decarboxylative allylation required 15 min. ^{*d*} 1.5 equiv of Ag₂SO₄ added.

decarboxylative allylation following our standard reaction conditions (see Table 2). Addition of Ag_2SO_4 to the reaction mixture and longer reaction time, however, were crucial for promoting the Heck cyclization to afford **6c**.¹⁶ These results suggest that successful Heck cyclization under our reaction conditions relies on an intimate and complex interplay between the electronic factors governing the reversible oxidative addition and migratory insertion steps.

Extensive 2D-NMR spectroscopic analysis (NOESY) of alkenes **6** indicated predominant formation of the *E*-alkene geometry, as shown, thus representing a formal *anti-β*-hydride elimination of the Pd(II) intermediate in the Heck cyclization. Although Heck reactions typically require *syn-β*-hydride elimination,¹³ several examples suggest the possibility of either an *anti-β*-hydride elimination or an isomerization manifold.¹⁷

In conclusion, we report a rapid and mild pathway toward the synthesis of complex polycyclic organoamines using a one-pot decarboxylative allylation—Heck reaction cascade. This work stands as a proof-of-principle that decarboxylative allylations can be coupled effectively to other powerful transition-metal-mediated carbon—carbon bond-forming events in one reaction vessel. Future efforts will be directed at the application of this reaction cascade toward the total synthesis of the manzamine-related alkaloid nakadomarin A¹⁸ as well as libraries of B-norbenzomorphans **8**, a conformationally restricted benzazepine scaffold that has provided potent analgesics and acetylcholinesterase inhibitors (Scheme 3).¹⁹

Scheme 3. Future Targets Acessible via the Pd-Catalyzed Decarboxylative Allylation—Heck Cascade

General Microwave Procedure. The reaction mixtures were heated to the indicated temperatures (300 W maximum power) for the indicated time in a sealed 10 mL CEM IntelliVent microwave tube using a CEM Explorer—Discover microwave reactor with IR temperature probe. Reaction temperature, pressure, and temperature-time profiles were monitored using the associated ChemDriver Explorer Application program.

Acknowledgment. Partial financial support provided by the Thomas F. and Kate Miller Jeffress Memorial Trust (J-808). A.K.K. was supported by a UVA Bass Scholarship for Summer Undergraduate Research.

Supporting Information Available: Experimental procedures, characterization data, and cif file for compound **3a**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL801986M

^{(18) (}a) Kobayashi, J.; Watanabe, D.; Kawasaki, N.; Tsuda, M. J. Org. Chem. 1997, 62, 9236–9239. (b) Kobayashi, J.; Tsuda, M.; Ishibashi, M. Pure Appl. Chem. 1999, 71, 1123–1126.
(19) (a) Jacobson, A. E.; Mokotoff, M. J. Med. Chem. 1970, 13, 7–9.

^{(19) (}a) Jacobson, A. E.; Mokotoff, M. J. Med. Chem. 1970, 13, 7–9.
(b) Chen, Y. L.; Liston, D.; Nielsen, J.; Chapin, D.; Dunaiskis, A.; Hedberg, K.; Ives, J.; Johnson, J.; Jones, S. J. Med. Chem. 1994, 37, 1996–2000.